Tsetse Genome Sequenced

tsetse_picIn another triumph for South African biomedical research, researchers at the South African Medical Research Council’s Bioinformatics Unit, South African Bioinformatics Institute (SANBI), with their international collaborators, have sequenced the tsetse fly genome. The International Glossina Genome Initiative (IGGI), including scientists at SANBI (led by Professor Alan Christoffels) have concluded a ten-year project on the tsetse fly (Glossina morsitans morsitans). Understanding the genomic structure and behavior of the tsetse fly is pivotal to treating sleeping sickness, a disease that affects about 70 million people in sub-Saharan Africa where the tsetse fly is most commonly found. African Sleeping Sickness in humans (Human African Trypanosomiasis-HAT) more often than not, results in death. There is no medically viable course of treatment. Public health efforts to prevent new infections in areas commonly afflicted by HAT have focused on using insect repellants and wearing appropriately protective clothing to avoid being bitten by the tsetse fly. HAT is a dreadful disease to contract. ‘Sleeping sickness’, the colloquial name for HAT, originates from observations of how it affects the human sleep pattern of an infected person. The saliva of the tsetse fly contains a parasite, or trypanosome. When the human host is bitten, the host’s blood is infected with trypanosomes. There is no known vaccine to prevent the spread of infected blood throughout the bloodstream. The early stages of the parasite infection in the host present with fever, headaches, and joint pain. If undetected, the parasite infection attacks the lymphatic system where swelling of the lymph nodes at the back of the neck are prominent. Finally, the central nervous system is assailed by the infection once its crosses the blood-brain barrier. When the host is at this stage of infection, the sleep-cycle is affected. The patient is confused and disoriented and experiences a disrupted sleep pattern with long sleep cycles by day and fragmented periods of wakefulness and delirium at night. Up until recently public health drives were concentrated on preventing new infections in the absence of a vaccine. Ten years ago, scientists formed the International Glossina Genome Initiative (IGGI), with the view that understanding the biology of the fly may be an effective way to prevent the spread of HAT. The aim of the IGGI consortium was clear: unveiling the physiological working of the fly could present the opportunity for biomedical researchers to develop new vector control strategies to limit the spread of sleeping sickness. The tsetse fly has a unique physiognomy, physiology, and, behavioural traits – most notably as a vector for Human African Trypanosomiasis. This is not new to the researchers. But, the primary focus of the IGGI consortium was to sequence the entire tsetse fly: a 366 million base pair genome. The key exercise here was to identify and annotate the genes within the genome sequence. The availability of this genomic data and its concomitant knowledge – including knowledge of the tsetse fly’s vision; olfaction; immune; and, reproductive physiology – provides an unparalleled opportunity to transform tsetse fly research and associated disease control practice. Tsetse flies are known for their unique biology: they feed exclusively on vertebrate blood; they give birth to live young (one at a time); they provide nutrition to their young by lactation; and, they formed complex relationships with no less than three different symbiotic bacteria. And there are no doubt several mysteries lying in wait – the genome holds information for which nobody has yet identified functions. The analysis of the genome assisted in revealing the basic biology of the fly on a fundamental level: for example, identifying genes that produce proteins involved with vision or smell allow researchers to better understand what may attract or repel tsetse flies, and thus trap them or drive them away. An area of interest has been tsetse mechanisms that eliminate parasites in the midgut. This is of both basic and applied research interest, since the ability to engineer greater resistance in flies could solve the problem of disease transmission. The IGGI consortium encompasses and was driven by over one-hundred and forty scientists from a range of research areas at different institutions.* It is truly an inter- and multi-disciplinary research project that includes researchers from inter alia the South African National Bioinformatics Institute in South Africa; the International Centre for Insect Physiology and Entomology (ICIPE) in Kenya; the Yale School of Public Health in the United States; the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Centre in England; the Liverpool School of Tropical Medicine in England. A hallmark of this consortium, however, is that African and Africa-based researchers played a decisive leadership role in the research. According to Professor Christoffels: ‘all of the activities were directed at supporting genomics research on the African continent. We have developed partnerships with researchers across the African continent over the course of the project. International genome projects are often directed at the primary goal of sequencing the genome and annotating (describing) the genes. Besides the scientific findings, this programme has demonstrated the value of genomics training in the context of a DNA sequencing project.’ For Professor Christoffels, and his African counterparts, human capacity development was a crucial factor of the success of their scientific endeavour. To this end, SANBI invested heavily in computer-based training pertaining to the analysis of the tsetse fly genomic data. Bioinformatics training at SANBI included: the analysis of the olfactory genes and the iron-metabolism genes; the examination of characteristics that control the ‘on/off’ switch of the genome; the identification of DNA that repeats itself multiple times in the genome; and, the description of the location of particular genes in the genome. Six PhD students conducted their research on this tsetse project. They graduated from the University of the Western Cape of which SANBI is an affiliate. Two PhD students, still conducting research on the tsetse fly, are concurrently supervised at SANBI and ICIPE in Kenya. This collaboration is a fine example of experienced scholars confident of their collaborative relationships and of African institutes of scientific research sharing their distinct expertise. On the continent, the African component of the IGGI consortium comprised over 40 experienced African researchers. They all were involved in multiple group annotations held in South Africa, Kenya, and Uganda. The results of this ten-year collaboration will appear in the journal, Science, on April 25, 2014. A collection of satellite research papers will appear concurrently in the open access journal, PLoS Neglected Tropical Diseases, where various aspects and functions of tsetse fly genes will be further discussed. Trypanosomiasis does not only affect humans. It affects animals, too, particularly cattle. Continued research into various tsetse fly species as they infect cattle via the trypanosome will also be of benefit to the agricultural communities of sub-Saharan countries, and by extension, the broader SADC commercial agricultural economy. Other Members of IGGI

  • Hokkaido University Research Center for Zoonosis Control (Hokkaido, Japan);
  • Institute of Tropical Medicine (Antwerp, Belgium)
  • Kenya Agricultural Research Institute Trypanosomiasis Research Centre (Kikuyu, Kenya);
  • London School of Hygiene and Tropical Medicine (London, UK);
  • National Livestock Resources Research Institute (Totoro, Uganda);
  • RIKEN (Japan);
  • TIGR (Rockville, USA);
  • Tsetse and Trypanosomiasis Research Institute (Tanga, Tanzania);
  • VectorBase (Notre Dame, USA);
  • WHO Regional Office for Africa (Brazzaville, Congo);

WHO-TDR (Geneva, Switzerland); About SANBI: The South African National Bioinformatics Institute within the University of the Western Cape (not to be confused with the similarly named South African Biodiversity Institute) is a Medical Research Council Unit for bioinformatics capacity development with the mission to conduct cutting edge bioinformatics and computational biology research relevant to South African, African and global populations. For more information about SANBI’s involvement in the project mentioned above, please contact Professor Alan Christoffels at alan@sanbi.ac.za or via telephone at 021 959 2969. For more general information about SANBI, you can visit the SANBI website at www.sanbi.ac.za or contact the SANBI offices at (021) 959 3645 or via email at info@sanbi.ac.za.

810-403   ,
100-101 pdf   ,
PMP pdf   ,
PEGACPBA71V1 exam   ,
70-980 certification   ,
1z0-808 exam   ,
70-178   ,
000-104 Brain dumps   ,
CISM   ,
300-209 dumps   ,
70-411 Study Guides   ,
70-178 exam   ,
70-411 pdf   ,
OG0-093 pdf   ,
NS0-157 dumps   ,
70-347 Study Guides   ,
300-115 dumps   ,
70-486   ,
NSE4Exam   ,
MB2-704 Exam   ,
400-051 certification   ,
350-060 Brain dumps   ,
000-080   ,
MB6-703 Study Guides   ,
220-802 dumps   ,
PEGACPBA71V1 dumps   ,
70-270Exam   ,
200-101 test   ,
642-999 dumps   ,
300-208 dumps   ,
200-120 dumps   ,
70-243 exam   ,
70-483 test   ,
000-017 exam   ,
350-050 certification   ,
CISM test   ,
70-243 certification   ,
070-461Exam   ,
1z0-808 test   ,
3002 test   ,
70-243 Study Guides   ,
640-911 certification   ,